
International Journal of Scientific & Engineering Research, Volume 9, Issue 1, January-2018                                                                                         179                                    
ISSN 2229-5518 

IJSER © 2018 

http://www.ijser.org  

Reliability of Fourier grid Hamiltonian method to 
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Abstract—Many techniques were used to study eigenvalues and eigenvectors of Schrödinger equation. One of them is the three-

dimensional Fourier grid Hamiltonian. This method will be developed and tested for calculating theoretical spectra of bottomonium meson. 

Non-relativistic quark potential model is used in our work. A high accuracy results which are in a good agreement with recently published 

experimental masses for the ground and the radially excited states are obtained for S-wave mesons states. 

Index Terms—Fourier grid Hamiltonian, quantum chromo-dynamics, bottomonium, Schrödinger equation, potential model.  

——————————      —————————— 

1 INTRODUCTION  

UARKONIUM is the name given to a subatomic system 
composed of two heavy quarks. While the system 
containing a bottom and anti-bottom ( bb ) quark pair is 

known as bottomonium. The S-wave (L = 0) vector (S = 1) 

J
PC =1  states ϒ, are very well studied [1], [2] since they 

could be produced in e+ e- annihilation and can thus decay to 
the experiment clean e+ e- and µ+ µ- final states. Following the 
discovery of the ϒ(1S) state, many other quarkonium states 
were discovered. The theoretical studies of the heavy 
quarkonium system [3] and its applications to bottomonium 
[4] are one of the special interest because of its relies entirely 
on the first principles of quantum chromo-dynamics. 

The results may be helpful in understanding the nature of 
current and future experimentally observed bottomonium 
states. In this work, we are introducing and testing the 
reliability of Fourier grid Hamiltonian (FGH) method in 
investigate the mass spectra of a bottomonium system in the 
non-relativistic quark model. In section 2, we review the main 
formalism of FGH method [5], [6] used in our analysis and the 
used model. The non-relativistic potential model for quarks is 
introduced in section 2.3. After that, numerical results and 
discussion are given. Finally, in the last section, we summarize 
our main results and conclusions. 

 
 
 

 

2 THEORETICAL BASIS 

2.1 Three-Dimensional FGH Method 

The theory behind the method is based on relating the 
potential energy at the N grid points with the kinetic energy in 
the momentum space via forward and reverse Fourier 
transforms between the coordinate and the momentum space 
[7], [8], [9]. The N × N symmetric matrix H, obtained by 
discretization has elements in the form of cosine sums. The 
task of calculating the bound state eigenvalue and 
eigenfunctions is thereby transformed to the task of finding 
eigenvalues and eigenvectors of the matrix H. 

The Hamiltonian could be written as the sum of the kinetic 
energy T


and a potential energy operatorV


 . The eigenvalue 

equation for a stationary state is given by 
 

[ ]T V E         (1) 

WhereT depends only on the square of the relative 
momentumP between the particles, V is a local interaction 
which depends on the relative distance, and E is the 
eigenenergy of the stationary state. This equation is a 
nonrelativistic Schrodinger equation if 

 
2

1 2 ( / 2 )T m m P         (2) 

 Where m1 and m2 are the masses of the particles and µ is 
the reduced mass of the system in configuration space, (1) is 
written 

    

[ ]T V       r r r r r r =E rd     (3) 

      In the following, we only consider the case of a local 

central potential 

 Q 
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( ) )V V r   r r r r       with    r  r  (4) 

Consequently, the wave function has the form 
 

 ( )Y ( )l lmR r rr            with    /r r r  (5) 

Using the method developed in [7], (3) can be rewritten  
 

2 2

0 0
(2 / ) ( ) ( ) ( )

( ) ( ) V( ) ( ) ( )

dr r u r dk k T k

kr kr r E r

 

  

  

 l

l l l l

r

j j r u u

 (6) 

Where ( ) ( )u r rR rl l
 is the regularized radial function and 

the functions ( )j krl
are spherical Bessel functions, This 

equation is the basis of the three-dimensional Fourier grid 
Hamiltonian method. 

2.2 Discretization 

We now replace the continuous variable r  by a grid of 
discrete values ri  defined by 

r  i i           with 0,1,2,.................,i N   (7) 

Where, ∆ is the uniform spacing between the grid points. 
Regularity at the origin imposes 0( 0) 0u r  l . For bound 
states, we have 0)(  rulim lr . Consequently, we choose to 
set 0)(  Nru Nl . Actually, this last condition is not 
necessary, but it does not spoil the accuracy of solutions. The 
normalization condition for the radial wave function is 

 

2

0
[ ( )] 1dr u



 l r      (8) 

The discretization of this integral on the grid gives 
1

2

1

[ ( )] 1
N

u r




  l i

i

     (9) 

As explained in [7], the grid spacing ∆ in the configuration 
space determines the grid spacing k in the momentum 
space. Therefore, we have a grid in the configuration space 
and a corresponding grid in the momentum space 
 

( / )sk s k s N        

                          with 0,1, ,s  N      (10) 

If we note ( )V V ri i , the discretization procedure replaces 
the continuous (6) by an eigenvalue matrix problem 

 
1

1

N
n n
j n j

j

H e




  ij
   for  1,2, , 1N i      (11)

where 

2 3 2 2

1

(2 / ) (( / ) )

( / ) ( / )

N

s

H N S T s N

j s N j sj N V


   

  





ij

l l i ij

ij

i

   (12) 

The (N-1) eigenvalues ne  of (11) correspond 
approximately to the first (N-1) eigenvalues of (6). In the case 
of a potential which possesses a continuum spectrum, only 
eigenvalues below the dissociation energy are relevant. Other 
eigenvalues, which forma discrete spectrum of positive 
energies, are spurious and correspond to standing wave 
solutions satisfying ( ) 0u r at 0r  andr N  . The 
eigenvector n

i gives approximately the values of the radial 
part of the nth solution of Eq. (6) at the grid points. 

2.3 The Non-Relativistic Potential Model 

As a minimal model of the bottomonium system we use a non-
relativistic potential model, with wave functions determined 
by the Schrödinger equation with a conventional quarkonium 
potential which is Coulomb plus linear plus hyperfine 
interaction model [10], [11], [12]. 

( ) (4 / 3 )sV r r br        (13) 

With inter-quark distancer , here, (-4/3) is due to the color 
factor, s is the quark-gluon coupling andb is the string. In 
the above equation, the first term is due to one gluon exchange 
and the second term is the linear confining potential [13]. By 
including the Gaussian-smeared hyperfine interaction [14] and 
orbital angular momentum term, the potential of theqq   
system for the ground state gluonic field has the form. 

 

2 22 3

( ) (4 / 3 )

(32 / 9 )( / ) .

s

r
s c c c

V r r br

m e S S

    

  

  (14) 

where S is the total spin quantum number of the meson [15] 
and 

 

. ( ( 1) / 2) (3 / 4)c cS S s s        (15) 

μ is the reduced mass of the quark and antiquark and mc is 
the mass of the charm quark. So that the potential has the 
following form for the bottomonium [14]: 
 

2 22 3

2 3

3

( ) (4 / 3 )

(32 / 9 )( / ) .

( ( 1) / 2 ) (1 / )[(( / )

( / 2 )) ] ( / )

s

r
s c c c

s

s

V r r br

m e S S

r

b r r



    

  

   

  

l l r

L.S T

 2
cm

 (16) 

Where the spin-orbit operator is diagonal in a , ,J L S  
basis, with the matrix elements 

 

. [ ( 1) ( 1) ( 1)] / 2L S J J L L S S        (17) 

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 9, Issue 1, January-2018                                                                                         181                                    
ISSN 2229-5518 

IJSER © 2018 

http://www.ijser.org  

The tensor operator T  has non-vanishing diagonal matrix 
elements only between L >0 spin-triplet states, which are 

 

/ (6(2 3)), 1

1 / 6, J L

( 1) / (6(2 -1)), = -1

L

T

   


 


L J L

L+ L J L

   (18) 

Now, the potential model (16) will be employed to get the 
spectra of bottomonium (bb ) bound states, with wave 
functions determined by the radial Schrödinger equation. 
Table (1) shows the fitted parameters of the model used. 

3 NUMERICAL RESULTS 

Bottomonium meson spectra have been studied by using FGH 
method with non-relativistic potential model. We predict the 
masses of the twelve bb  states shown in table 2, where we 
compared the present theoretical predictions with those from 
[12]. These new results are fitted by using the experimental 
spectra [16] to give the most suitable masses with experiments. 
The 2  relation is used to easily compare among the results 
obtained by using the non-relativistic potential and this 
relation is defined as. 

2 . . 2

1

(1 / ) ( )
n

Theo Exp
z z

z

n mass mass


      (19) 

The summation runs over a selected sample of n mesons, 
where 
n is the number of experimental data. .Exp

zMass is the 
experimental mass of meson labeled k in the sample, while

zMass Theo. is the corresponding theoretical mass depending 
upon the free parameters. 

After getting masses of bottomonium mesons we drew the 
ratio between the obtained theoretical predictions of 
bottomonium spectra and those from [12] versus experimental 
data [16] as shown in fig1 and in fig2. It is seen that the ratio 
converges to one particularly. This means that the yielded 
results are in a good agreement with recently published 
predictions. 

 

 

 

 

 

 

 

 

 

TABLE 1 
PARAMETERS USED TO FIT MASSES OF (bb  ) STATES IN 

ACCORDING TO QCD THEORY 

 

TABLE 2 
THE EXPERIMENTAL AND THEORETICAL BOTTOMONIUM MASS 

SPECTRA WITH THOSE FROM [12]. WE LIST THE WORLD AVERAGE 

MASSES FROM PDG AS WELL AS THE LATEST OBSERVATIONS. 

 

 

Fig. 1. Theoretical predictions versus experimental masses for 
ϒ-state. 
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4 CONCLUSION 

In this work, FGH method discretization has been used for 
solving Schrödinger equation, by transforming it into a matrix 
form. Coulomb plus linear plus hyperfine plus tensor term 
potential model is used. Accurate eigenvalues are obtained for 
S-wave of bottomonium mesons spectra using few lines of 
python code. We observed that the method gives high 
accuracy results which are in a good agreement with 
experimental results; it gives small values of 𝜒2 which shows 
the validity of the used method. It is recommended to using 
FGH method for solving radial Schrödinger equation because 
it is easy to use, saves the time and is very accurate, so we 
advise using this method to obtain other mesons spectra and 
properties.  
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Fig. 2. Theoretical predictions versus experimental masses for 

bη -state. 
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